HYBRID ROCKET PROPULSION

Allen L. Holzman

UNITED TECHNOLOGIES/CHEMICAL SYSTEMS SAN JOSE, CALIFORNIA

SOLIDS

LIQUIDS

HYBRIDS

HYBRIO ENGINE OPERATION

COMPARISON OF THE THEORETICAL SPECIFIC IMPULSES ATTAINABLE WITH SOLID, LIQUID AND HYBRID PROPELLANT SYSTEMS

COMPARISON OF THE DENSITY-SPECIFIC IMPULSES ATTAINABLE WITH SOLID, LIQUID AND HYBRID PROPELLANT SYSTEMS

BISTORY

o 1930's	California Rocket Society - static tests
o 1940's - 50's	Pacific Rocket Society - LOX/Douglas fir fuel flight tested to 30,000 ft.
	GE - evaluated E ₂ O ₂ /PE engine
o 1950's - 60's	APL - reverse hybrid NB ₄ NO ₃ /JP
o 1960's - 70's	CSD - fundamental regression/combustion studies - supersonic target drones, flight tests (Sandpiper/HAST/Firebolt) - High energy FLOX/Li/LiH/HTPB tests 380-sec I _{sp} @ 40/1 expansion ratio - 50K-lb thrust N ₂ O ₄ /Al/PBAN
	ONERA/SNECHA/SEP - HNO,/amine fuel, sounding rockets, flight tests
o 1980's	AMROC - 50K-1b thrust LOX/PB
o 1990's	AMROC - 75K-lb thrust LOX/PB

HPIAG

GENERAL PROPULSION SYSTEM FEATURES COMPARISON

Feature	Solid	Liquid LOX-JP	Classical Hybrid
DOT classification	Class B	Inert when-MT	Inert
Explosive classification	1.3	60% TNT equiv. when full	NA
Sensitivity to grain cracks/voids	Yes	NA	No
Launch abort capability (propulsion termination)	No	Yes	Yes
Handling costs	Highest	Medium	Lowest
I _{sp}	Low	High	High
ρ I _{sp}	High	Low	Medium
Exhaust HCI	20%	0	0
Exhaust particulate	High	Low	Either

HYBRID COMBUSTION BOUNDARY LAYER

BASIC HYBRID BURNING RATE LAWS

Elementary pipe flow $\dot{Q}_w = \dot{m}_f h_v = (h/c_p) \triangle h_c$

Refined relation

$$\dot{\mathbf{r}} = \begin{pmatrix} 0.036\mu^{0.2} \\ \rho_f \times 0.2 \end{pmatrix} \begin{pmatrix} C_H \\ C_{H_0} \end{pmatrix} \begin{pmatrix} U_e \\ U_b \end{pmatrix} \begin{pmatrix} \triangle h_c \\ h_v \end{pmatrix} G^{0.8} + \frac{Q_R}{\rho_f h_v}$$

Good working equation

 $\dot{r} = a G_o^n$

 Q_W = heat flux to wall (fuel)

 m_F = fuel flow rate

 h_v = effective heat of vaporization $\triangle h_c$ = heat of combustion of fuel

G = mass flux in port

U = gas velocity

WHY AREN'T HYBRIDS OPERATIONAL?

- Operational success of liquid F-1 engines and SRM boosters for the shuttle and Titan III caused interest in hybrids to wane.
- o Early emphasis was only for high density impulse systems. Cost, safety, environmental and reliability issues were of second order.
- o All the 1960s and 70s work in hybrids was done by primarily liquid and solid propulsion companies. In any selection process for upcoming systems, hybrids were always perceived second best.
- Customer liquid and solid propulsion communities (incumbents) are not interested in sharing funding.
- o It is difficult to generate funding for an order of magnitude scale increase to 750K and larger thrust engines.
- o "Political factors interfere with technical factors."

HPIAG

HYBRID SYSTEMS

BOOSTER APPLICATIONS

ATLAS BOOSTER DEVELOPMENT AND QUALIFICATION

			. Y	er		
	1	2	3	4	5	6
1. Fuel formulation studies	X	X I		 		
2. Sub-scale port tests	X	 x 	 		 	
3. Injector development	x	l L	l 1	! X L	 	
4. Analytical modelling	 X 	<u> </u>	l l	! !	X !	
5. Trade studies	X	<u> </u>	<u> </u>	 X 	<u> </u>	
6. Full-scale motor tests	 	! ! !	X L	 X 	<u> </u> 	
7. Nozzie development	<u> </u>	 	<u> </u>	X	l X !	<u> </u>
8. Throttling tests		<u> </u>	 	X	 -X 	<u> </u>
9. Process develop & verif.		х	<u> </u> 	 x 		
10.Full scale qualification testing]]]_x	<u> </u>	! X

HYBRID SYSTEM ADVANTAGES BOOSTER APPLICATIONS

	Hybrids	Solide	Liquide
Explosive hazard	none	high	high
HCI in exhaust	none	high	none
Specific Impulse	high	low	highest
Density Impulse	high	highest	lowest
Throttleability	yes	no	yes
On pad costs	low	high	high
System cost	low/medium	medlum	high
Abort capability	yes	no	yes
Understanding of basic analytical regression/	уов	no	no

COMPARISON OF THROAT BETAS

	O/F	T. °Ř	Beta	l _{spvsc} Sec	c* ft/sec	m.f Al ₂ O ₃
Solid propellant ASRM TP-H-1233		6411	0.096	287.	5178	0.096
LOX/Hydrogen	5.0	6110	0.626	433.	7961	
LOX/100% HC	2.37	6698	0.269	323.	5830	
LOX/35% aluminum/ 65% HC	1.36	7149	0.130	321.	5786	٧٢٥.
LOX/45% Aluminum/ 55% HC	1.17	7377	0.083	319.	5716	.136
All values theoretical for $P_{\rm c}$	- 100	0 psia,	nozzie	area ra	ilo =	10. 0

HYBRID SYSTEM DISADVANTAGES NON-METALLIZED FLOW BOOSTER APPLICATIONS

	Hybrids	Solids	Liquids
Nozzie erosion	high	low	n.a.(regeneratively cooled)
Residual fuel/ox	6%/1%	<< 1%	< 1%
Accumulated data	low	high	high

HYBRID SYSTEMS

UPPER STAGE PROPULSION APPLICATIONS

UPPER STAGE HYBRID MOTOR DEVELOPMENT AND QUALIFICATION

				Year Year							
	1	2	3	4	5	6					
1. Fuel formulation studies	X	I X	 								
2. Sub-scale port tests	 X	 x 	 	 							
3. Injector development	x	<u></u>	<u> </u> 	 X 							
4. Analytical modelling	X	! !	 	<u> </u> 	x !						
5. Trade studies	X	<u> </u> 	! X !	<u> </u>	ļ 	 					
6. Full-acale motor tests		 	 X 	x x							
7. Nozzie development		 	ļ ļ 	xx	<u> </u>						
8. Throttling lests	<u> </u>	 		x-	! !	 					
9. Process develop & verif.	ļ	x-	<u> </u> 	<u></u> x	 	 					
10, Full scale qualification testing		 	 		! X	<u> </u>					

HYBRID PROPULSION INDUSTRY ACTION GROUP

Aerojet AMROC Atlantic Research Boeing Aerospace General Dynamics Hercutes Lockheed Martin Marietta Rocketdyne Thlokol United Technologies

HPIAG SUPPORTS HYBRID PROPULSION DEVELOPMENT AND DEMONSTRATION

HPIAG Program Planning Presentations

Pre	sentations Date
•	NASA/MSFC (W. Littles)
•	NASA HQ (Dr. Rosen, G. Reck)
•	NASA/MSFC (J. Lee, J. McCarty)
•	NASA HQ (A. Aldrich, G. Reck)
•	National Space Council (I. Bekey)
•	NASA HQ (J. R. Thompson)
•	Space Systems & Technology Advisory Committee 9/13/90
•	NASA HQ (J. R. Thompson)
•	NASA/MSFCProgram Development* 10/25/90
•	AF Space Division (Col. Colgrove)* 10/29/90
•	Aerospace Safety Advisory Panel
•	Stafford Group
•	NASA/MSFC (J. Lee, J. McCarty)
•	NASA/Code R (A. Aldrich)
•	NASA HQ (J. R. Thompson)
•	AF Space Division* 3/14/91
•	NASA/MSFCResearch and Technology (J. Moses/J. Redus)* 6/20/91

^{*}Full HPIAG not present

Augustine Report Excerpts on the Future of the U.S. Space Program

"Over the longer term, the nation must turn to new and revolutionary technologies..."

- More capable and significantly less costly means to launch manned and unmanned spacecraft
- Architecture studies now underway will define capable, low-cost launch vehicles
- Maintain vigorous advanced launch system technology program
 - Enhancement of current fleet
 - Basis for revolutionary launch systems

Hybrid Propulsion Positively Addresses OAST's Civil Space Transportation Requirements

An Industry Consensus on the Hybrid Potential

- Radically improves safety in all phases of manufacture, vehicle stacking/assembly, and flight, and reduces environmental concerns
- Offers a reasonable design alternative to large clusters of LO₂/LH₂ engines for heavy-lift boost propulsion
- May enable major reduction in booster life cycle costs

The United States aerospace community cannot afford to overlook the hybrid propulsion option

Review of Initial NASA Hybrid Propulsion Technology Program

- Phased technology acquisition and demonstration
 - initial approach to technology acquisition resulting from formulation of NASA-HPT program
 - Address technology deficiencies in series of graduated subscale motor tests (Phase II)
 - Demonstrate technology at 1.5 Mibf thrust level (Phase III)

Calendar Year	88	89	90	91	92	93	94	95	96	97	\$M
HPT Phase I Identify the Necessary Technology (four contracts)	Y										2.1
HPT Phase II Acquire the Technology (two contracts)			Awar			Comp	ete				16
HPT Phase III Demonstrate the Technology in a Large Subscale System						CBD May			Con	nplete V Jan	25

Total Funding Commitment Required is \$41M

- Problems
 - Technology development does not demonstrate large-scale feasibility in time frame required for heavy-lift (SEI) applications
 - Does not utilize national aerospace assets (HPIAG)

An Alternative Development Approach Provides A Fast Track Large-Scale Hybrid Demonstration

- Focused technology acquisition and demonstration
 - Approach suggested by J. R. Thompson based on successes of F-1 engine and large solid rocket motor development
 - Define specific technical issues for large booster development via early testing of Shuttle SRM-scale hybrid

- Problems
 - Effort includes a large-scale feasibility demonstration only—subsequent mix of subscale and full-scale demonstrations to address point design problems requires definition

Final HPT Development Approach Recommended to J. R. Thompson in December 1991

Recommended HPT Program Was Included in Budget Request From MSFC and LeRC for GFY 93 Start—Subsequently Pushed to GFY 95

Key Tech	nology Objectiv	6: 3.0 Provid	e Technologies to Support the Development of a Robust, Cost Effective
		Heavy-	Lift Capability
Specific (Objective:	3.7 Develo	p Technologies for Achieving Low Cost Booster Options and
		Demons	itrate at an Appropriate Scale
Target I	Ailestone:		TASK TITLE: TRANSPORTATION-HYBRID
Centers	WBS		
MSFC	590-21-XX	1993	Authority to release NASA Research Announcement for Hybrid Booster Technology Program
			Award contracts to begin development and testing of both Gas Generator and "Classical" Hybrid test motors
		1994	Complete 100 klbf testing
		1994	Initiate development of 750 klbf test motors for both "Classical" and Gas Generator concepts
		1996	Test both Hybrid Booster concepts at 750 klbf testing
		1996 1996	Complete analysis of performance data and validation of analytical models Complete documentation
LeRC	590-21-XX	1993 1995	Begin development of analytical models and materials data base Validate models at 100 klbf level
		1996	Validate models at 750 klbf level and extrapolation of Hybrid unique scaling data

Near-Term HPIAG Initiative Provides Program Bridge to GFY 95 HPT New Start

Program concept: Combine industry discretionary resources with NASA R&T funds to begin near-term HPT development

- Initiate basic technology studies at JPL
- Explore technical feasibility of hybrid propulsion for space launch applications via subscale and small-scale hybrid motor tests:
 - Both classical and aft injection cycles
 - 500-lbf, 15-klbf, 150-klbf motors (typical thrust levels)
- Begin limited hybrid propulsion launch vehicle infrastructure studies:
 - Operability issues
 - Reliability evaluation
 - Cost
- Develop program bridge to \$40M CSTI effort

Multiple Motor Scales Provide Initial Feasibility Evaluation and Hardware Basis for NRA Follow-on Work

Motor Thrust Level	Classical Objectives	Aft Injection Objectives
500 lbf	Fuel regression rate characteristics	- GG propellant ballistic characteristics
	Effects of defects	· Effects of defects
	Throttle response characteristics	Initial concept throttling characteristics
15 klbf	 Fuel regression scale-up characteristics 	- GG propellant scale-up characteristics
	Multiple-port grain retention and fuel utilization	· LO ₂ injector feasibility verification
	Combustion stability and efficiency	- Combustion stability and efficiency
150 klbf	Initial HPT demonstrations at thrust levels vehicle application	el of significance for potential launch

Recommended NASA/HPIAG Organization to Accomplish Goal

- Create two consortiums to pursue development of both classical and gas generator engine cycles
- Companies and NASA initially linked by MOU

Bridge Program Elements

- Program duration 24 months
- Program total cost \$5.6M
 - \$1.1M industry discretionary
 - \$4.5M NASA R&T funds
- Three basic program tasks include both classical and aft injection cycles
 - Task 0--JPL Fundamental Studies (Hybrid Rocket Technology Program)
 - Task 1--Launch Vehicle Infrastructure Studies
 - Task 2--Motor Evaluation and Demonstration

Program Master Schedule

9.4.2 Reliability of Solid Rocket Motor Cases and Nozzles by J.G. Crose